The Visual Computer
https://doi.org/10.1007/s00371-020-01823-7

ORIGINAL ARTICLE

®

Check for
updates

A low-cost, practical acquisition and rendering pipeline for real-time

free-viewpoint video communication

Sverker Rasmuson'@® - Erik Sintorn® . UIf Assarsson’

© The Author(s) 2020

Abstract

We present a semiautomatic real-time pipeline for capturing and rendering free-viewpoint video using passive stereo matching.
The pipeline is simple and achieves agreeable quality in real time on a system of commodity web cameras and a single desktop
computer. We suggest an automatic algorithm to compute a constrained search space for an efficient and robust hierarchical
stereo reconstruction algorithm. Due to our fast reconstruction times, we can eliminate the need for an expensive global surface
reconstruction with a combination of high coverage and aggressive filtering. Finally, we employ a novel color weighting
scheme that generates credible new viewpoints without noticeable seams, while keeping the computational complexity low.
The simplicity and low cost of the system make it an accessible and more practical alternative for many applications compared

to previous methods.

Keywords Free-viewpoint video - 3D acquisition - Stereo reconstruction

1 Introduction

In recent years, there has been a revival for true 3D dis-
play environments such as head-mounted displays for virtual
reality (VR) and augmented reality (AR), multi-view dis-
plays and holographic displays. Many new systems aimed for
both consumer and professional use have reached the market,
which has sparked an interest in content creation for these
platforms, both with regard to entertainment, but also for,
e.g., instruction videos and telepresence applications [8,19].

A lot of research has been done to solve this multifaceted
problem of capture, 3D reconstruction, streaming and render-
ing. Several high-quality end-to-end systems for producing
such content have been presented, with convincing results

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00371-020-01823-7) contains
supplementary material, which is available to authorized users.

B< Sverker Rasmuson
sverker.rasmuson @chalmers.se

Erik Sintorn
erik.sintorn @chalmers.se

Ulf Assarsson
uffe @chalmers.se

Chalmers University of Technology, Gothenburg, Sweden

Published online: 07 March 2020

for many applications such as free-viewpoint video (FVV)
and telepresence.

These systems, however, have the problem that they
require huge, bulky and expensive equipment to be feasible.
This is true both in terms of capturing equipment, e.g., spe-
cial cameras, but also in terms of the raw processing power
needed. So even with the current momentum of VR and AR,
no techniques have been presented that are accessible at con-
sumer level for content production in real time.

One of the major difficulties in achieving real-time frame
rates is the high cost of global surface reconstruction. As
such, attempts have been made with different combinations
of templates and artificial intelligence, but this of course
restricts what type of scenes that can be captured, and it
introduces problems handling dynamic content [26,27]. We
circumvent this by proposing a very fast and high-quality
reconstruction for a pair of cameras. When extended to multi-
ple camera pairs, we achieve sufficiently good coverage that,
in combination with aggressive filtering, no explicit surface
reconstruction is needed.

Our ultimate goal is an affordable system which can scan
and reconstruct from a novel viewpoint (e.g., another user’s
current HMD orientation) in real time. Thus, unlike previ-
ous work where quality has been the primary concern, the
main responsibility of our system is to produce an acceptable
image within 33 or 16 ms. In this work, we mainly use faces

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-020-01823-7&domain=pdf
http://orcid.org/0000-0003-4623-5115
https://doi.org/10.1007/s00371-020-01823-7

S.Rasmuson et al.

Fig.1 Novel reconstructed
views of three different scenes
are generated in under 15 ms, on
affordable hardware, using our
method. The two rightmost
images show a comparison
between our method (top) and
using a KinectV2 (bottom)

for evaluation, but we do not make any assumptions about
specific topologies. To overcome this challenging problem,
the following difficulties must be addressed:

— At 30 ms per frame, we cannot afford the use of
high-quality global mesh reconstruction algorithms (e.g.,
Poisson reconstruction [14]).

— With consumer grade cameras, overall image quality is
much lower than in previous work.

— With consumer grade cameras, we do not have access to
explicit camera synchronization.

— Since we want to allow for any topology, we cannot rely
on modifying an existing mesh, nor using templates or
other strong priors.

— We want good scene coverage and therefore must be able
to handle multiple cameras recording from multiple view-
points.

As such, the main contribution in this paper is a semi-
automatic, real-time end-to-end pipeline for capturing and
rendering, using only commodity hardware and a single desk-
top computer. The technical contributions in this pipeline
include:

— Efficient automatic computation of geometric bound-
aries, based on the visual hull, for reduced search ranges.

— Anovel, highly optimized, hierarchical view-space stereo
matching algorithm that utilizes estimated normals for
improved quality.

— Consistent colors in the novel viewpoint, by blending
input using a screen-space distance-to-silhouette map.

The system captures six video streams from off-the-shelf
webcams and reconstructs anovel viewpoint on a single desk-
top computer at real-time frame rates (Fig. 1).

@ Springer

2 Previous work

Free-viewpoint video and performance capture Collet et
al. [8] implement a full end-to-end free-viewpoint video
pipeline which achieves high-quality reconstruction for a
number of scenes. They combine RGB, active stereo in IR
and silhouette information with Poisson surface reconstruc-
tion [14] to compute high-quality meshes for each frame and
track mesh deformations to handle topology changes. The
results of their method are very compelling, but they use a
high number of cameras and a large studio of specialized
equipment. Their method is also computationally expensive;
processing one frame on a machine with a dual 12-core pro-
cessor and an AMD Radeon R9 200 GPU takes them 28.2
min.

Recently, there have been a number of real-time imple-
mentations capable of handling dynamic content satisfactory.
A template-based approach by Zollhofer et al. achieves high-
quality reconstruction of deformable models in real time
using a custom-built RGBD camera [27]. While compelling,
this method uses only a single view and requires a template
first to be acquired for each scene. This template model is
fixed and cannot handle changing scene topologies.

Another strategy is to extend Kinect Fusion [12], a popular
method for scanning static geometry, which fuses depth maps
from a single Kinect sensor at a high frame rate into a vol-
umetric signed distance field. This method handles dynamic
scenes by using nonrigid volumetric fusion, where new depth
frames are warped to a reference model in a nonrigid man-
ner [18]. This approach does not need an explicit template
but still has problems with changing scene topologies, since
the method relies on a reference surface model captured at a
single point in time.

Fusion4D [9] combines a volumetric approach with esti-
mation of a nonrigid motion field between frames, as well
as using active stereo for acquiring depth information.

A low-cost, practical acquisition and rendering pipeline for real-time...

This approach is state of the art in terms of quality and
handles multiple views in real time. It also handles fore-
ground/background segmentation without a green screen
unlike Collet et al. [8]. However, it is still very computa-
tionally expensive and uses dedicated machines with 3.4GHz
Intel Core i7 CPUs and two NVIDIA Titan X GPUs to gen-
erate each RGBD stream. In contrast, we produce 5 RGBD
streams on a single machine in under 10ms.

Following and extending this approach, Holoportation[19]
creates aroom-sized reconstruction that allows for an immer-
sive telepresence system. This system uses a similar approach
as Fusion4D [9] but extends it to an interactive system, allow-
ing users to communicate with each other in real time using
AR or VR headsets. Again, this system is computationally
expensive, requiring dedicated machines for each depth and
color streams.

Other more lightweight telepresence systems try to solve
the problem by using sets of depth cameras [17,24]. While
attractive due to their simplicity, these methods do not scale
well due to interference problems when using multiple units.
There are also simpler methods that rely solely on visual hull
for capturing geometry [20], in which speed and simplic-
ity are traded for geometric fidelity. This method can only
successfully capture the structure of convex objects.

Face reconstruction There exists a vast body of research
dedicated to facial reconstruction. One appealing method
uses depth cameras for real-time reconstruction, computing
a dense correspondence field between the input image and
a generic face model[13]. More recent methods use deep-
learning-based approaches from single images [22,26]. Some
of these approaches also achieve real-time speeds [10,25]. All
of them, however, require strong priors and explicit or learned
models of faces. One method without such priors uses pas-
sive stereo and achieves convincing results using an iterative
stereo refinement approach [3]. This method is, however, far
from real time, taking about 20 min per frame in their imple-
mentation.

Depth estimation Real-time 3D reconstruction has gained
momentum since the advent of cheap RGBD cameras such as
the Kinect. These devices are often compelling because they
can produce depth maps at a high frame rate while being
low-cost commodity devices. One common approach that
these devices use is structured light, where a known pattern is
projected onto a scene, and depth values are computed by ana-
lyzing how this pattern is deformed when striking surfaces.
While giving accurate results, this method cannot be used in a
multi-view setup, since the projected patterns interfere across
devices. Another common strategy is using time-of-flight-
based methods for depth estimation [11]. These cameras

measure the time-of-flight of an emitted light pulse for each
pixel of the camera, which can then be used to infer the depth
since the speed of light is known. For our approach, this is
not a feasible method because of the problem of using mul-
tiple devices (e.g., the KinectV2), and the inherent problem
of multi-path interference, in which the device measures the
depth incorrectly in corners.

Passive stereo methods use two RGB images to compute
depth maps via triangulation. Popular methods that achieve
high quality include PatchMatch Stereo [5], which has also
been extended to real time [9,19,27]. One hierarchical stereo
matching approach achieves high-quality face reconstruction
using an iterative refinement scheme [3]. Another approach,
using an iterative refinement method implemented using
CUDA, achieves real-time performance, albeit with striping
artifacts that would make it unusable for our application [15].

While this is a well-studied problem and there exist many
compelling approaches, our system requires simultaneous
reconstructions from 5 to 10 camera pairs to be completed
within 16 or 30 ms on a single computer, which none of the
above methods achieves while retaining an acceptable qual-
ity. As a trade-off, we also prefer quality over high resolution
for the depth estimation.

3 System overview

In our system, we use a single desktop computer, equipped
with an Intel i17-8700 CPU, 16 GB of system RAM and an
NVIDIA GTX 980 GPU. We have six Logitech C922 web-
cams that are placed in an arc in front of the scene. These are
placed so that each adjacent pair can be used for stereo match-
ing, i.e., pairing camera one and two, two and three, three
and four, etc., in total five match pairs. This exact number
of cameras used is a compromise between runtime perfor-
mance, ease of calibration, coverage and depth accuracy for
our applications. There are, however, nothing specific about
this number, and we have tested the system successfully with
as little as three and up to eight cameras. We use a green
screen and two diffuse light sources to help with background
segmentation and uniform lighting, respectively. The cam-
eras are calibrated once with a semiautomatic method and
corrected for scale and can then be used for any motif.

The real-time pipeline consists of multiple stages (see
Fig. 2) that start with image capture and end with a final
view rendered from the current position of a user-controlled
virtual camera. All major steps of the pipeline are computed
on the GPU, using CUDA for the stereo reconstruction and
OpenGL for the rest. We start the capture of the scene and
preprocess the images by undistorting from the camera’s
distortion parameters, converting to grayscale, and applying
background segmentation. We also compute the visual hull

@ Springer

S.Rasmuson et al.

Preprocessing
* Undistort

Calibration i
* BG Segmentation

* Grayscale

Input Images

Visual Hull
&

Individual Meshes

Uniqueness /

Ray marching Validation

Regularization

Final view

Iterate

Fig. 2 An overview of our real-time pipeline. The corresponding sil-
houette boundary for the blue and green camera is marked in their
respective colors. The silhouette boundaries from all cameras are used
to compute the visual hull of the geometry. The gray camera pair
depicted under raymarching and uniqueness/validation illustrates that

of the geometry to constrain the search space for our stereo
matching algorithm.

The geometry is computed pairwise for adjacent cameras,
using a novel optimized view-space stereo matching algo-
rithm, see Sect. 6. The algorithm is composed of multiple
steps and is applied hierarchically in a coarse-to-fine measure
(see Fig. 2). Early in the algorithm, we estimate geometry
normals, which we use to orient our matching filters as well
as for regularization and interpolation. We apply constraints
to discard invalid parts of the geometry.

Position and normal buffers from the stereo reconstruc-
tion are used to create one mesh per camera pair. Finally,
these meshes are rendered from the current virtual camera
position. In this camera’s screen space, we resolve which
meshes are visible for each pixel and compute a final color
using blending. This blending function uses two weights: one
that represents the angle between the virtual camera and the
recording cameras, and one that is sampled from a distance-
to-mesh-silhouette map computed in screen space for the
virtual camera, as discussed in Sect. 8.

4 Calibration

The system is calibrated using a semiautomatic method sim-
ilar to Beeler et al. [3], using a calibration sphere and the aid
of OpenCV [6]. After computing the approximate Euclidean
frame, we, however, employ the Ceres Solver [2] instead for
final bundle adjustment. We use a simple pinhole camera
model with one coefficient of radial distortion. The output
world coordinate system has its origo aligned with the center
of the first camera used in the calibration.

@ Springer

we raymarch from one camera in each camera pair and then perform
uniqueness/validation with the other camera in the pair. Output meshes
are not merged explicitly but rendered from the final view where frag-
ments are weighted together

5 Capturing and preprocessing

We use Logitech C922 webcams that are connected via USB
3.0 to a single machine equipped with USB 3.0 PCI Express
breakout cards, to which each video feed is streamed in Full
HD resolution at 30Hz. We use FFmpeg to capture the video
streams directly into our pipeline, or to replay pre-recorded
video streams. These FFmpeg instances run on separate CPU
threads decoding video in the background. We use two differ-
ent synchronization schemes depending on the source. For
live video, we ensure that the incoming streams use small
buffers and that the pipeline is emptied as fast as possible
(possibly by dropping frames), so that we always get the lat-
est incoming frames into our pipeline. For recorded streams,
we synchronize the videos by using the embedded presenta-
tion time stamps for each frame. This synchronization will of
course only be approximate, since the cameras do not have a
global synchronization mechanism.

The cameras are configured to have automatic exposure
disabled, to ensure comparable colors across cameras, and
auto-focus disabled so as not to disrupt the calibration. For
simplicity and higher quality, we employ a green screen to
help with background/foreground segmentation, and use two
diffuse light sources to get reasonably uniform lighting. In
our examples with human motifs, we also use a green shirt
to get a precise segmentation of the neck region.

Image preprocessing uploaded to GPU memory and all
subsequent computation is performed on the GPU. This

A low-cost, practical acquisition and rendering pipeline for real-time...

leaves the CPU free to decode the video streams for the next
frame and perform application logic. At the cost of a single
frame of latency, we upload the this frame asynchronously
while processing the current. The first step in preprocessing
is undistortion of the captured images from the distortion
parameters captured in the calibration step. Next, we use a
standard chroma-key algorithm to get a high-quality fore-
ground/background segmentation of the scene [7]. Finally,
the images are converted to grayscale and a mipmap hierar-
chy per image is computed.

Visual hull generation We can significantly restrict the vol-
ume of where the potential geometry resides by utilizing
our foreground segmentation and our wide-angle setup (see
Fig. 3). For each camera, a surface is created, which con-
sists of triangles with one vertex in the camera center and
two vertices along the silhouette on the camera’s far plane
(see the left image Fig. 3). These triangles are the output of
a geometry shader which is executed for each foreground
pixel. Going anticlockwise around the pixel’s 8-connected
neighborhood, a triangle is output if both the current and the
previous neighbor are considered background. The intersec-
tion of the created silhouette cones [16], the red area in the
right image of Fig. 3, creates a boundary for the geometry
which is commonly called the visual hull [16]. To compute
this intersection efficiently for a specific camera, every other
camera’s silhouette cone (approximated by a triangle mesh)
is rendered from it in turn to a depth map. As each of the
other cameras is rendered in this manner, the new values are
blended into the frame buffer, for each pixel retaining the
smallest value (e.g., furthest away from the camera), effec-
tively tightening the boundary around the geometry. This is
then repeated for all cameras. This computed depth map can
then be used as a starting position for the following stereo
reconstruction, which both decreases the number of matches
that need to be performed, as well as the risk of outliers in the
stereo matching (the effect of which can be seen in Sect. 9.2).

Fig. 3 To the left, we see how one camera’s silhouette cone is con-
structed with triangles that extend from the camera center to the
silhouette of the segmented foreground. To the right, the intersection of
these surfaces, the red area known as the visual hull, creates a bounding
volume for where the geometry must reside

6 Stereo reconstruction

The conventional method of doing local stereo matching is
to use epipolar geometry and compute the matching over
an NxN pixel window in a rectified image pair, i.e., two
images where the image planes are parallel. This is done
both as a simplification to the matching problem and as an
optimization, since a view ray from the first image projects to
a horizontal line in the second image. This greatly increases
performance in CPU implementations since it leads to a much
more cache-friendly data-access pattern. However, there are
two major drawbacks with using image rectification. The
first is the inevitable distortion of the rectified image under
reprojection; the other is the implicit use of fronto-parallel
matching windows (see Fig. 4). Popular techniques such
as PatchMatch Stereo [5] have shown that there can be
significant quality gains from using oriented matching win-
dows. In this paper, we estimate normals that we can use
to orient matching windows, as well as for geometry-aware
interpolation and smoothing (see Sect. 6.4), and therefore
skip rectification completely. This does not affect perfor-
mance significantly in our GPU centric implementation (see
Sect. 9.1), since GPUs rely much more on latency hiding
than caches and since the GPU’s texture cache is optimized
for spatial locality.

For each camera pair, we use a hierarchical local stereo
matching algorithm, loosely based on the stereo reconstruc-
tion by Beeler et al. [3]. However, to be able to easily estimate
and utilize normal information, we instead do stereo match-
ing by raymarching view rays from one camera in each pair
and storing the results as view-space geometry buffers. The
matching is divided both into multiple steps and in a hier-
archical fashion, where the resolution is doubled in each
dimension for each level of the hierarchy (see Fig. 2). Below,
we start by describing each step for the first hierarchical level,

Fig. 4 In a rectified image pair (left), the images are reprojected so
that the image planes are parallel. When sampling an NxN region in
the images, this implies using a fronto-parallel matching window in
world space, which may or may not be aligned to the underlying geom-
etry. Using surface-oriented matching windows (right), there is no such
restriction, and the matching window will more closely approximate
the geometry

@ Springer

S.Rasmuson et al.

followed by a subsection of how higher hierarchical levels
are handled.

6.1 Raymarching

In the first raymarching step, at hierarchical level zero, we
shoot rays corresponding to a given geometric resolution. We
march along each ray for a fixed length starting from the con-
servative estimate of the geometry constructed as described
in Sect. 5. For each step along the ray, a rectangular filter is
constructed in world space and projected on both cameras.
Colors are sampled with mipmapping in the corresponding
color textures, and the distance between both patches is com-
puted using a mean-subtracted sum of absolute difference
(SAD) cost function, where the distance Dsap is computed
as

1 n
Dsap =~ 1(pi = 1tp) = (@i = 1tg)], ()
i=0

where n is the number of samples, p is each sample from
the first image with corresponding mean value 1), and g is
each sample from the second image with corresponding mean
value (4. This cost function is chosen since it is robust to
local lighting conditions while still being cheap to compute,
since we can sample an approximate mean value by using
the mipmap hierarchy. Other more expensive cost functions
were tested without any significant improvement in quality.
The position with the best score along the ray is written to
the position buffer.

6.2 Uniqueness

In the marching step, we do not have a threshold on the match-
ing score and will always take the best matching point along
our ray. This gives rise to invalid geometry in areas where we
only have visibility for one of the cameras. In the second step,
we address this problem by identifying these problematic
areas by projecting the obtained position buffer from the first
camera onto the second camera and then do stereo matching
along its view rays for the projected points. If the best match
along this ray does not closely match the best match from the
first camera, the point is discarded. This method is similar
(but not identical) to the uniqueness constraint employed by
Beeler et al. [3].

6.3 Normals

Up until this step (for the first hierarchical level), we have not
had any normal information for the geometry, and the filters
used have been oriented with the z-plane of its corresponding
camera. Now that we have obtained a first initial guess of the
geometry, we can also estimate the normals. This is done

@ Springer

v v

Fig. 5 The regularization algorithm looks at the intersection of the
current view ray with planes, red and blue, constructed from neighboring
positions and normals. The regularized position is then computed as an
edge-preserving weighting of the ray/plane intersections

using a simple average of computed normals using the cross
product of neighbors of each position in the buffer.

6.4 Regularization

The raw stereo matching is rather noisy, and we want to
enforce that we are reconstructing a continuous surface. This
is done in a regularization step, where the current view ray is
intersected with planes constructed from each of the neigh-
boring points and normals (see Fig. 5). An edge-preserving
weighted average of these intersections is computed as a new
position along the ray. With #,, being the parameter along the
ray corresponding to an intersection between the current view
ray r, and a plane constructed with a neighboring point P,
and corresponding normal N, we have

__(Pn'N)
n ry - N

n

2

for each neighbor n. We can compute a weight w,, which
is the inverse absolute distance between this point along the
ray and the corresponding point along the ray for the current
point Py as

1
w, =max e, ——], 3)
" (Ity — |P0||>

for some small value of €. The new point P along the ray can
then be computed as

_ P Sy

Pl Y, wa X

for all neighboring positions.

In this step, we also do basic hole filling if a point has
many valid neighbors, and pruning, if a point has very few
valid neighbors. After this step, the normals are recomputed
in the same manner as Sect. 6.3.

A low-cost, practical acquisition and rendering pipeline for real-time...

6.5 Interpolation

The last step of the stereo reconstruction algorithm is to
interpolate positions and normals for the next level in the hier-
archy. For performance, this is done in a separable algorithm,
first horizontally and then vertically in the view-aligned
geometry buffers. If there are two valid neighbors, the new
point is the average of these two points projected on the cur-
rent view ray. If there is only one valid neighbor, we use the
intersection of the view ray with a plane constructed from
the neighbor, similarly as in Sect. 6.4.

6.6 Higher levels of the hierarchy

The next levels of the hierarchy are executed in the same man-
ner, doubling the geometric resolution for each iteration until
the highest hierarchical level has finished. A few differences
from the first hierarchical level should, however, be noted. We
now have estimated normals in each step, and the filters used
for stereo matching are thus oriented in the corresponding
direction. We no longer use a fixed raymarch length for the
raymarching, but the range is instead computed before start-
ing stereo matching for the current hierarchical level. The
range is computed as double the maximum distance from
the current position to the intersection of the current view
ray with planes constructed by all neighboring positions and
their corresponding normals. This gives us a rough estimate
of the curvature of the local geometry and adapts the search
range accordingly. Finally, since the uniqueness step is very
costly (equally expensive as the actual marching step), it is
only performed in the first hierarchical level. This does, how-
ever, not lead to invalid points being introduced again, since
these will not be rematched further up the hierarchy.

6.7 Temporal Hole Filling

Immediately following the stereo reconstruction, we employ
a simple hole-filling scheme in our computed geometry
buffers. We delay the pipeline with N frames and then look
at N frames forward in time and N frames backwards in
time, centered around the current frame. A value of N = 5is
used in this paper. If the current frame is missing a value but
temporally surrounding frames are valid, we copy that near-
est valid sample in time to the current frame. This has both
a hole-filling effect and helps to mitigate flickering along
silhouettes.

7 Mesh validation

For each camera pair, we now have view-space position
and normal buffers. In offline algorithms [3,8], these buffers
would be merged in a global surface reconstruction step,

using, e.g., Poisson surface reconstruction [14], along with
further refinement steps. This is, however, a very expensive
procedure, with state-of-the-art methods at most running at
interactive frame rates for the number of point samples that
we employ [4,21].

For performance reasons, we thus opt for a much simpler
approach. Each set of position buffers and normals is triangu-
lated into meshes using a simple grid-based algorithm. Since
we have a high amount of overlap between the pairwise com-
puted meshes, we aggressively filter out potentially invalid
triangles using two complementary methods.

The first method samples a number of view-space points
over the surface of the triangle. These points are then used as
input to our stereo matching algorithm using the SAD score.
This is cheap since we only require a fixed set of points per
triangle, but is also highly discriminating since we use the
actual surface of our mesh for sampling.

In the second method, we remove triangles that are at
an oblique angle with respect to the camera pair that they
were constructed from. Here we assume that we have enough
coverage so that another stereo pair will have a better view
of the surface in question.

8 Final view generation

The quality of the meshes will reflect the quality of the stereo
reconstruction and is thus dependent on well-textured areas
that are visible in both cameras. The quality will generally
be worst at silhouettes, where the geometry has a high angle
toward the camera and the visibility for the whole projected
matching filter is not guaranteed for both cameras. Following
this argument, the heuristic we use is based on that the quality
of the mesh is lower closer to its silhouettes.

Consequently, we need to compute the distance to the sil-
houette for each point in each mesh. Optimally, we would
like to compute the actual geodesic distance along the mesh,
but for performance reasons we instead compute the distance
in pixels for the projected mesh. This computation is done in
screen space with a GPU version of the flood-fill algorithm,
called jump flooding [23]. We first compute the location of
all silhouette points in a single pass by just looking at the
validity of neighboring pixels for each pixel. The pixel loca-
tions of these silhouettes are then propagated to every other
pixel in the projected mesh and stored in a distance map. If
a propagated silhouette location is closer to the current pixel
than what was previously written in the distance map, or if
it did not have any previous value, it is updated with this
new location. When finished, the distance map contains the
screen-space coordinates of the silhouette closest to that par-
ticular screen-space location, for each projected pixel in the
mesh.

@ Springer

S.Rasmuson et al.

This distance map is used to successfully weight colors
and geometry together for the final view generation. The ulti-
mate purpose of our pipeline is to generate a novel view of
the scene from the perspective of a virtual camera controlled
by the user. The final step is thus to compute this view using
our reconstructed geometry, the set of aligned meshes and the
captured camera images. The meshes are rendered to the cur-
rent virtual camera position into separate geometry buffers.
The colors and the geometry are then weighted together using
the computed distance-to-silhouette map for each mesh.

Mesh visibility Since the meshes are overlapping, we need
to decide which positions that belong to the same surface if
we have fragments from more than one mesh rendered to a
pixel. These fragments could belong to samples of the same
surface, but could also belong to other surfaces now occluded
by this front-most surface. In the geometry buffers for each
mesh, we rendered both the closest front-facing surface but
also the closest back-facing surface. If we sort our view sam-
ples according to depth, we can find if any such back-facing
samples are in between two front-facing ones. In that case, we
know that the subsequent samples surely belong to another
part of the geometry and can be discarded. We also employ
a simple threshold to discern between surfaces to help with
situations where imperfect geometry prevents us from using
this scheme. If the distance between two front-facing surfaces
is greater than this threshold, they are considered different
surfaces and only the closest is kept.

Color blending The fragments that have been deemed vis-
ible from the current view are now projected on to its two
corresponding camera images, where the final colors are sam-
pled. These colors, sampled from one or many camera pairs,
are weighted together using a linear combination of two
weights wg , and w, , for each sample n. The first weight
g4, 1s sampled directly from the previously computed dis-
tance map and ensures that we get smoothly varying colors on
the overlapping edges between meshes. The second weight
wy,n captures view dependence and is computed as

V0,n
Wy .n = (UO,n - vc,n) : ﬁy
0,n

(&)

where vp ,, is the view-space position of the fragment n and
Ve.n 1s its corresponding recording camera position. Using
these weights for each color sample, the final color C can be
computed as

_ Zn ¢wd,ncn + (1 - ¢)wv,ncn

C
Zn ¢wd,n + (1 — ¢)wv,n

. (6)

where ¢ is a parameter between 0 and 1 and ¢, is each color
sample.

@ Springer

Table 1 Final parameters used in the pipeline

General
Numer of cameras 6 #
Number of camera pairs 5 #
Camera resolution 1920 x 1080 W x H
Stereo reconstruction
Geometry resolution (level 0) 60 x 35 W x H
Geometry resolution (level 1) 120 x 70 W x H
Geometry resolution (level 2) 240 x 140 W x H
Raymarch length (level 0) 5 cm
Raymarch steps (level 0) 128 #
Raymarch steps (level 1) 32 #
Raymarch steps (level 2) 8 #
Match filter size (level 0) 10 x 10 mm
Match filter size (level 1) 5x5 mm
Match filter size (level 2) 25x%x25 mm
Match filter samples 93 x 3) #
Temporal hole filling
Filter width 5 #

9 Results

We have recorded a number of scenes of people talking, turn-
ing their heads and touching their face with their hand, as well
as one scene with a teddy bear (see Fig. 1). The final param-
eters used for our pipeline can be seen in Table 1. For more
details, see the video in the supplementary material.

9.1 Performance

In Fig. 6, we see a performance breakdown of the main algo-
rithmic steps of the pipeline, for 100 frames using five camera
pairs, in the order that the pipeline steps are employed for
each frame. The timings reported are the relevant OpenGL
and CUDA times, since they totally dominate the pipeline.

Not included in this graph, but happening in the back-
ground on the CPU, we have one thread per camera fetching
and decoding each incoming frame into an OpenGL Pixel
Buffer Object. This frame is then uploaded to the GPU asyn-
chronously using the dual copy engine feature of modern
GPU’s. By delaying the pipeline one frame, the updating
of incoming frames to textures is done entirely in the back-
ground at no extra cost.

The visual hull generation step contains the creation of sil-
houette cones and the projection of this geometry onto each
camera to constrain the search space for stereo reconstruc-
tion, as described in Sect. 5. The expensive part of this step
is the rendering of each camera’s silhouette cones from each
other camera, since it has quadratic complexity with respect
to the number of cameras.

A low-cost, practical acquisition and rendering pipeline for real-time...

Fig.6 Performance breakdown
of the main steps of the 15
proposed pipeline

Next we have the actual stereo reconstruction imple-
mented in CUDA as described in Sect. 6, reported for each
hierarchical level. We note that the difference in compu-
tation time between hierarchical levels is small and does
not increase in proportion to the higher resolution, since we
adjust the number of steps taken along the ray when going
up the hierarchy. The stereo marching step is dominated by
the high number of texture lookups required when matching
filters and is thus limited by the available bandwidth to mem-
ory, how well the pipeline manages to hide the latency, and
how well the caches are utilized. We use an implementation
where we parallelize across raymarching steps to ensure that
we have enough thread-level parallelism even for low reso-
lutions. We also get a high utility of the spatial coherence of
the texture cache with a hit rate of over 95%.

The temporal hole-filling step (see Sect. 6.7) is insignif-
icant in terms of computation. However, if the filter width
is W, it requires that the whole pipeline is delayed with a
number of frames equal to (W — 1)/2.

The last two steps before the final view generation are to
triangulate meshes from the geometry buffers and to employ
our triangle validation step, as described in Sect. 7. Both of
these steps are fairly cheap since they only scale with the
chosen geometric resolution.

The next three areas of the graph represent the time it
takes to do final view generation as described in Sect. 8. This
includes rendering the meshes to the final view, computing
a distance to silhouette for each such projected mesh, and
computation of mesh visibility and blending of sampled col-
ors.

In general, we can see that the performance is stable and
only varies slightly from frame to frame. We can also note
that all graphs are well below the 30 Hz frame rate of the
used webcams and could even be used with a 60 Hz source.

Performance Breakdown

. Input Image Processing
Visual Hull Generation
Cuda Setup
Hierarchical Level: 0
Hierarchical Level: 1
Hierarchical Level: 2

Temporal Hole-filling

. Triangulation

. Render Meshes
. Distance To Silhouette Map

[Final view
. Misc

25 50 75 100

9.2 Reconstruction quality

As described in Sect. 6, our suggested mesh reconstruc-
tion algorithm is a combination of a number of techniques.
Figure 7 shows how the results improve with each added
technique. A first bare-bones implementation of our stereo
reconstruction can be seen in Fig. 7a, where we simply march
along the view ray for each pixel, in full resolution, stripping
away everything else from the pipeline. The intersection of
each camera’s view frustum is used to constrain our search, as
suggested by Beeler [3]. As can be seen in Fig. 7b, the results
can be greatly improved by using the silhouette information
available in the input videos to constrain the search region.
This also reduces the number of raymarching steps required
significantly. Next, in Fig. 7c, we see the results of applying
regularization to the noisy results as described in Sect. 6.4.
This smooths the results when neighboring matches are close
to the true surface, but outliers will still cause disturbing
artifacts. Therefore, we apply the uniqueness test described
in Sect. 6.2, prior to regularization, to remove outliers (see
Fig. 7d). In Fig. 7e, we show that averaging the results of the
current frame with a few previous and upcoming frames will
further improve the results.

At this point, the obtained matches are mostly close to
the true surface, but, since only very local regularization has
been performed, there are still many high-frequency artifacts
where remaining erroneous matches are found. Figure 7f
shows the results of instead reconstructing the mesh hier-
archically. Here, a low-resolution mesh is constructed first,
using all the steps described above. Then, higher-resolution
meshes are obtained by iteratively repeating the process with
a shorter search range around the results obtained from the
previous hierarchical step. The hierarchical algorithm also
means that we can get an estimation of the surface’s normal
which improves the results of raymarching and regulariza-
tion in each step. The final resulting mesh from one camera
pair is shown in Fig. 7g.

@ Springer

S.Rasmuson et al.

(a) Ray Marching (b) Silhouette Bounded

(€) Temporal

(f) Hierarchical

(g) Normal aware

Fig.7 The different steps of our mesh reconstruction. a—e Show the results of applying different steps immediately at full resolution. f Shows the
benefit of applying the same steps hierarchically, and g shows the importance of using our estimated normals

Fig. 8 Results of our color weighting scheme compared to a straight
average. Left: Average, Right: Our scheme

Finally, as described in Sect. 8, we compute the final view
using a color weighting scheme. The results of using this
scheme as compared to just averaging colors can be seen in
Fig. 8.

Our results compared to a KinectV2 using libfreenect2 [1]
can be seen in Fig. 1. Apart from lower resolution in geome-
try and especially colors, the overall shape of the head and the
nose looks distorted, possibly due to multi-path interference
for the KinectV2. We have used one KinectV2 for this com-
parison, since using multiple KinectV2’s is neither trivial nor
officially supported.

@ Springer

Fig.9 Our method (left, 20 ms) in comparison with a reference offline
method (right, 20 min)

We have also made a comparison to a reference offline
method by Beeler et al. [3] (see Fig. 9). In this comparison,
we had access to a reconstructed mesh for each frame from
the reference method, which we projected colors on using
the associated video streams. An approximate visibility was

A low-cost, practical acquisition and rendering pipeline for real-time...

computed using depths maps of the mesh seen from each
camera. Though they use seven cameras and quite a different
setup than what we used, this did not prove to be of any
problem to our pipeline.

The biggest difference in quality between our method and
the reference method is found along the silhouettes, which
are much cleaner in their method. We attribute this to that we
lack the global surface reconstruction necessary to average
out these types of errors.

Note that there is a huge difference in runtime performance
between the two methods; our whole pipeline takes about
20ms per frame, while just their reconstruction is reported to
take about 20 minutes per mesh with the exact same input.

10 Discussion and limitations

To limit the scope of this paper, we decided to focus our eval-
uation on human faces. With that in mind, there is nothing in
this paper that is actually specific to this type of reconstruc-
tion. In the supplemented video, we show a working example
of a scene with a teddy bear (see Fig. 1). We also claim that
faces are a good candidate benchmark for this type of recon-
struction, since humans are very sensitive to the appearance
of faces; errors in proportion or geometry are very easily
picked up and considered disturbing, especially in moving
scenes. For consumer-level applications, it is also reasonable
to believe that much content will contain humans and human
faces.

While developing our pipeline, we soon realized that there
are diminishing returns in how the resolution of the recon-
structed geometry affects the perceived quality of the final
view. As long as the quality, in terms of, e.g., accuracy, holes
and smoothness of the mesh is high enough, the requirements
on the de facto resolution seem to be moderate. We believe
that the reason for this is that there are such strong shad-
ing cues in the color images that they totally dominate over
the actual geometric fidelity when it comes to the perceived
quality of the view. This reflects several design choices in our
pipeline, notably the use of a view-space aligned matching
algorithm in combination with normal-oriented filters. The
reasoning for this is that the implicit fronto-parallel matching
windows used in conventional stereo matching are a decreas-
ingly valid approximation of the local geometry as the size
of the matching windows in world space goes up. We have
also tuned our CUDA implementation of the stereo march-
ing to this by parallelizing across raymarching steps instead
of using on thread per view ray, which would have been the
natural way to do it.

This ensures that we can supply the GPU with enough
active threads for successful latency hiding even for low res-
olutions. This is especially important in this case, since stereo

matching is constrained by memory bandwidth in the form
of texture lookups.

Currently, we do not have any method to know before-
hand which mesh that has the highest quality at a certain
overlap, and rely on filtering to remove as much as possible
of poor reconstruction. Sometimes this method fails and we
have problems with triangles with oblique angles that pro-
trude in different directions. This, along with geometry along
silhouettes which pop in and out of existence, can create dis-
turbing flickering effects. This is a downside of not using
global surface reconstruction.

11 Conclusions and future work

Although we do not achieve the same quality as, e.g.,
Fusion4D [9], we achieve usable free-viewpoint video in
under 15ms with a fraction of the resources. Our simple setup
enables almost anyone with a few webcams to be able to
create content suitable for new medias such as AR and VR
head-mounted displays and holographic screens. Since it is
in real time, the content could be streamed in a live setting
from a home computer or from a small studio.

Our pipeline manages to handle dynamic scenes rea-
sonably well, even though the cameras used lack global
synchronization. However, to improve how the pipeline han-
dles fast-moving objects, it would be interesting to extend
the stereo reconstruction to be temporally aware, by using,
e.g., optical flow.

To further decrease the barrier of recording this type of
content, it would be preferable if the pipeline could skip the
step of using a green screen and also work robustly under
natural lighting. These are for many applications solved
problems but would of course increase the complexity and
computational cost of the pipeline.

Another road is to optimize the pipeline for systems
with limited resources. With only two camera pairs and
low-resolution geometry, one could still obtain decent recon-
struction, and further optimizations could possibly scale
down the computational complexity, e.g., to allow for smart-
phones with multiple cameras to run the pipeline.

Acknowledgements Open access funding provided by Chalmers Uni-
versity of Technology. This work was supported by the Swedish
Research Council under Grant 2014-4559.

Compliance with ethical standards

Conflict of interest All authors have declare that they have no conflict
of interest

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the

@ Springer

S.Rasmuson et al.

source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

—_

10.

11.

12.

13.

14.

libfreenect2. https://doi.org/10.5281/zenodo.50641

Agarwal, S., Mierle, K.: Others: Ceres solver. http://ceres-solver.
org

Beeler, T., Bickel, B., Beardsley, P., Sumner, B., Gross, M.:
High-quality single-shot capture of facial geometry. ACM Trans.
Graph. 29(4), 40:1-40:9 (2010). https://doi.org/10.1145/1778765.
1778777

Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Guen-
nebaud, G., Levine, J.A., Sharf, A., Silva, C.T.: A survey of surface
reconstruction from point clouds. Comput. Graph. Forum 36(1),
301-329 (2017). https://doi.org/10.1111/cgf.12802

Bleyer, M., Rhemann, C., Rother, C.: Patchmatch stereo—stereo
matching with slanted support windows. In: BMVC (2011). https://
www.microsoft.com/en-us/research/publication/patchmatch-
stereo- stereo-matching- with-slanted-support-windows/

Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software
Tools (2000)

Cannon, E.: Greenscreen code and hints. http://gc-films.com/
chromakey.html

Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D.,
Calabrese, D., Hoppe, H., Kirk, A., Sullivan, S.: High-quality
streamable free-viewpoint video. ACM Trans. Graph. 34(4), 69:1—
69:13 (2015). https://doi.org/10.1145/2766945

Dou, M., Khamis, S., Degtyarev, Y., Davidson, P., Fanello, S.R.,
Kowdle, A., Escolano, S.O., Rhemann, C., Kim, D., Taylor, J.,
Kohli, P., Tankovich, V., I1zadi, S.: Fusion4D: real-time performance
capture of challenging scenes. ACM Trans. Graph. 35(4), 114:1-
114:13 (2016). https://doi.org/10.1145/2897824.2925969

Feng, Y., Wu, F,, Shao, X., Wang, Y., Zhou, X.: Joint 3D face
reconstruction and dense alignment with position map regression
network. CoRR arXiv:1803.07835 (2018)

Hansard, M., Lee, S., Choi, O., Horaud, R.: Time-of-Flight Cam-
eras: Principles. Methods and Applications. Springer, Incorporated
(2012)

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R.,
Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A.,
Fitzgibbon, A.: Kinectfusion: Real-time 3D reconstruction and
interaction using a moving depth camera. In: Proceedings of the
24th Annual ACM Symposium on User Interface Software and
Technology, UIST ’11, pp. 559-568. ACM, New York, NY, USA
(2011). https://doi.org/10.1145/2047196.2047270

Kazemi, V., Keskin, C., Taylor, J., Kohli, P, Izadi, S.: Real-time
face reconstruction from a single depth image. In: 2014 2nd Inter-
national Conference on 3D Vision, vol. 1, pp. 369-376 (2014)
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruc-
tion. In: Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, SGP ’06, pp. 61-70. Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland (2006). http://dl.acm.
org/citation.cfm?id=1281957.1281965

. Kowalczuk, J., Psota, E.T., Perez, L.C.: Real-time stereo match-

ing on cuda using an iterative refinement method for adaptive
support-weight correspondences. IEEE Trans. Circuits Syst. Video

@ Springer

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Technol. 23(1), 94-104 (2013). https://doi.org/10.1109/TCSVT.
2012.2203200

Laurentini, A.: The visual hull concept for silhouette-based image
understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150-
162 (1994). https://doi.org/10.1109/34.273735

Maimone, A., Fuchs, H.: Encumbrance-free telepresence system
with real-time 3D capture and display using commodity depth
cameras. In: Proceedings of the 2011 10th IEEE International
Symposium on Mixed and Augmented Reality, ISMAR ’11, pp.
137-146. IEEE Computer Society, Washington, DC, USA (2011).
https://doi.org/10.1109/ISMAR.2011.6092379

Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time. In: The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015)

Orts-Escolano, S., Rhemann, C., Fanello, S., Chang, W., Kow-
dle, A., Degtyarev, Y., Kim, D., Davidson, P.L., Khamis, S., Dou,
M., Tankovich, V., Loop, C., Cai, Q., Chou, P.A., Mennicken, S.,
Valentin, J., Pradeep, V., Wang, S., Kang, S.B., Kohli, P., Lutchyn,
Y., Keskin, C., Izadi, S.: Holoportation: Virtual 3D teleportation
in real-time. In: Proceedings of the 29th Annual Symposium on
User Interface Software and Technology, UIST ’16, pp. 741-
754. ACM, New York, NY, USA (2016). https://doi.org/10.1145/
2984511.2984517

Petit, B., Lesage, J.D., Ménier, C., Allard, J., Franco, J.S., Raf-
fin, B., Boyer, E., Faure, F.: Multicamera real-time 3D modeling
for telepresence and remote collaboration. Int. J. Digit. Multimed.
Broadcasting 2010, 247108:1-247108:12 (2010)

Preiner, R., Mattausch, O., Arikan, M., Pajarola, R., Wim-
mer, M.: Continuous projection for fast 11 reconstruction. ACM
Trans. Graph. 33(4), 47:1-47:13 (2014). https://doi.org/10.1145/
2601097.2601172

Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning
detailed face reconstruction from a single image. CoRR (2016).
arXiv:1611.05053

Rong, G., Tan, T.S.: Jump flooding in GPU with applications to
voronoi diagram and distance transform. In: Proceedings of the
2006 Symposium on Interactive 3D Graphics and Games, 13D ’06,
pp- 109-116. ACM, New York, NY, USA (2006). https://doi.org/
10.1145/1111411.1111431

Tan, F., Fu, C.W,, Deng, T., Cai, J., Cham, T.J.: Facecollage: A
rapidly deployable system for real-time head reconstruction for
on-the-go 3D telepresence. In: Proceedings of the 25th ACM Inter-
national Conference on Multimedia, MM ’17, pp. 64-72. ACM,
New York, NY, USA (2017). https://doi.org/10.1145/3123266.
3123281

Tewari, A., Zollhofer, M., Garrido, P., Bernard, F., Kim, H., Pérez,
P., Theobalt, C.: Self-supervised multi-level face model learn-
ing for monocular reconstruction at over 250 Hz. CoRR (2017).
arXiv:1712.02859

Tewari, A., Zollhofer, M., Kim, H., Garrido, P., Bernard, F,
Pérez, P., Theobalt, C.: Mofa: Model-based deep convolutional face
autoencoder for unsupervised monocular reconstruction. CoRR
(2017). arXiv:1703.10580

Zollhofer, M., NieBner, M., Izadi, S., Rehmann, C., Zach, C.,
Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C.,
Stamminger, M.: Real-time non-rigid reconstruction using an rgb-
d camera. ACM Trans. Graph. (2014). https://doi.org/10.1145/
2601097.2601165

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.50641
http://ceres-solver.org
http://ceres-solver.org
https://doi.org/10.1145/1778765.1778777
https://doi.org/10.1145/1778765.1778777
https://doi.org/10.1111/cgf.12802
https://www.microsoft.com/en-us/research/publication/patchmatch-stereo-stereo-matching-with-slanted-support-windows/
https://www.microsoft.com/en-us/research/publication/patchmatch-stereo-stereo-matching-with-slanted-support-windows/
https://www.microsoft.com/en-us/research/publication/patchmatch-stereo-stereo-matching-with-slanted-support-windows/
http://gc-films.com/chromakey.html
http://gc-films.com/chromakey.html
https://doi.org/10.1145/2766945
https://doi.org/10.1145/2897824.2925969
http://arxiv.org/abs/1803.07835
https://doi.org/10.1145/2047196.2047270
http://dl.acm.org/citation.cfm?id=1281957.1281965
http://dl.acm.org/citation.cfm?id=1281957.1281965
https://doi.org/10.1109/TCSVT.2012.2203200
https://doi.org/10.1109/TCSVT.2012.2203200
https://doi.org/10.1109/34.273735
https://doi.org/10.1109/ISMAR.2011.6092379
https://doi.org/10.1145/2984511.2984517
https://doi.org/10.1145/2984511.2984517
https://doi.org/10.1145/2601097.2601172
https://doi.org/10.1145/2601097.2601172
http://arxiv.org/abs/1611.05053
https://doi.org/10.1145/1111411.1111431
https://doi.org/10.1145/1111411.1111431
https://doi.org/10.1145/3123266.3123281
https://doi.org/10.1145/3123266.3123281
http://arxiv.org/abs/1712.02859
http://arxiv.org/abs/1703.10580
https://doi.org/10.1145/2601097.2601165
https://doi.org/10.1145/2601097.2601165

A low-cost, practical acquisition and rendering pipeline for real-time...

Sverker Rasmuson “Sverker Ras-
muson is a Ph.D. student in the
graphics research group at
Chalmers University of Technol-
ogy and holds a M.Sc. in Engi-
neering Physics from Lund Uni-
versity. His research interests
include free-viewpoint video,
stereo reconstruction and 3D
acquisition.”

Erik Sintorn “Erik Sintorn is an
assistant professor in Computer
Graphics at Chalmers University
of Technology. His main research
topics are real-time global illumi-
nation, compression for rendering
and efficient shadow rendering.”

UIf Assarsson “Ulf Assarsson is
a professor in Computer Graphics
and head of the graphics research
group at the Department of Com-
puter Science and Engineering,
Chalmers University of Technol-
ogy, Sweden. His main research
interests include free-viewpoint
video, voxel compression, real-
time rendering, global illumina-
tion and GPU techniques. He is
co-author of the book Real-Time
Shadows.”

@ Springer

A low-cost, practical acquisition and
rendering pipeline for real-time free-
viewpoint video communication

Sverker Rasmuson, Erik Sintorn & Ulf
Assarsson

The Visual Computer
International Journal of Computer
Graphics

ISSN 0178-2789

Vis Comput
DOI 10.1007/s00371-020-01823-7

@ Springer

Your article is published under the Creative
Commons Attribution license which allows
users to read, copy, distribute and make
derivative works, as long as the author of
the original work is cited. You may self-
archive this article on your own website, an
institutional repository or funder’s repository
and make it publicly available immediately.

@ Springer

	A low-cost, practical acquisition and rendering pipeline for real-time free-viewpoint video communication
	Abstract
	1 Introduction
	2 Previous work
	3 System overview
	4 Calibration
	5 Capturing and preprocessing
	6 Stereo reconstruction
	6.1 Raymarching
	6.2 Uniqueness
	6.3 Normals
	6.4 Regularization
	6.5 Interpolation
	6.6 Higher levels of the hierarchy
	6.7 Temporal Hole Filling

	7 Mesh validation
	8 Final view generation
	9 Results
	9.1 Performance
	9.2 Reconstruction quality

	10 Discussion and limitations
	11 Conclusions and future work
	Acknowledgements
	References

